QTT-rank-one vectors with QTT-rank-one and full-rank Fourier images

نویسنده

  • Dmitry Savostyanov
چکیده

Quantics tensor train (QTT), a new data-sparse format for one– and multi–dimensional vectors, is based on a bit representation of mode indices followed by a separation of variables. A radix-2 reccurence, that lays behind the famous FFT algorithm, can be efficiently applied to vectors in the QTT format. If input and all intermediate vectors of the FFT algorithm have moderate QTT ranks, the resulted QTT-FFT algorithm outperforms the FFT for large vectors. It is instructive to describe a class of such vectors explicitly. We find all vectors that have QTT ranks one on input, intermediate steps and output of the FFT algorithm. We also give an example of QTT-rank-one vector that has the Fourier image with full QTT ranks. By numerical experiments we show that for certain rank-one vectors with full-rank Fourier images, the practical ε–ranks remain moderate for large mode sizes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superfast Wavelet Transform Using QTT Approximation. I: Haar Wavelets

We propose a superfast discrete Haar wavelet transform (SFHWT) as well as its inverse, using the QTT representation for the Haar transform matrices and input-output vectors. Though the Haar matrix itself does not have a low QTT-rank approximation, we show that factor matrices used at each step of the traditional multilevel Haar wavelet transform algorithm have explicit QTT representations of lo...

متن کامل

Towards numerical linear algebra in logarithmic complexity: QTT tensor approximation of discrete functions and operators

The breaking through approach to low-parametric representation of multivariate functions and operators is based on the principle of separation of variables [4]. The novel method of quantized tensor approximation (QTT) is proven to provide the logarithmic data-compression on a wide class of discrete functions and operators [1]. This makes it possible to reformulate the standard discretization sc...

متن کامل

Multilevel Toeplitz Matrices Generated by Tensor-Structured Vectors and Convolution with Logarithmic Complexity

We consider two operations in the QTT format: composition of a multilevel Toeplitz matrix generated by a given multidimensional vector and convolution of two given multidimensional vectors. We show that low-rank QTT structure of the input is preserved in the output and propose efficient algorithms for these operations in the QTT format. For a d-dimensional 2n× . . .×2n-vector x given in a QTT r...

متن کامل

On explicit QTT representation of Laplace operator and its inverse

Ranks and explicit structure of some matrices in the Quantics Tensor Train format, which allows representation with logarithmic complexity in many cases, are investigated. The matrices under consideration are Laplace operator with various boundary conditions in D dimensions and inverse Laplace operator with Dirichlet and Dirichlet-Neumann boundary conditions in one dimension. The minimal-rank e...

متن کامل

Quantics-TT Collocation Approximation of Parameter-Dependent and Stochastic Elliptic PDEs

We investigate the convergence rate of QTT stochastic collocation tensor approximations to solutions of multi-parametric elliptic PDEs, and construct efficient iterative methods for solving arising high-dimensional parameter-dependent algebraic systems of equations. Such PDEs arise, for example, in the parametric, deterministic reformulation of elliptic PDEs with random field inputs, based for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011